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Observations of the Venus thenmal stincture collected during the first three
decades of the space age reveal high surface temperatures (730 K), near-
adiabatic vertical temperature gradients throughout the lower atmosphere
0 58 km), and dreversed poleToequator mésosphenic thermal structure,
with polar Lonux('m! dres that ace '~ 20K lighet than thise over the equator
at aititudes between 70 aud 100 kin The physical processes that inaintain
(hiese anomalous features of the thermal balance were not completely un-
derstood when this topic was last teviewed in the cacly 1980 s, Since that
time, additional observations have provided an improved description of the
atmospheric thermal structure and optical propertics.  Here, we sumina-
rize the new observational constraints provided by the Venera 15, VEGA,
and Galileo missions, and those provided by Barth-based ultra-violet, near-
infrared, and microwave observations. We also describe recent advances in
modeling methods that have resolved some of the most perplexing issues,
incliding (i)_the need for unidentified thermal opacity sources to explain the

. high surface temperatures and atrospheric thernal flux distiibution, (47) the
oﬂ(‘(‘(s of reduced Water vapo and ¢loud sbundances on the greenhouge, and
(ii1) thc procos%(-s that mainTain the anomalously warm poldr mesosphere.
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shondd have vadia wive equiibriom b hitpess trimperature g 230 I
i rem cukable agre ernent swich vale |, anferred from availlab W nfraned
observa poir, [Monoz, 19831 T he hioh e rowave biig htnes temper-
atur es there fore stumulated aspirttes debate about their oe me and
theiimplications for the Venus thermal bealance.

Investigations Of the ther malbalance of the deep atinosphiere of
Venus were a major focus 0F both the US and Soviet space prograt s
during the first two decad es of t he spac©age  u-situ ieasuwrcments
acquired by the Venera 4 14 and Proneer Venus (f717) entiyvprobes
confirmed that the atmospheric temporat ures inerea se from - 225 K oat
the (“1011(2 tops(~65km)rovaluesnear730 K, d t he swiface (1 igure
1)[Se], 1983]. These obser vations also provided improved constraints
on the composition and optical p ropcrties of theassive (0 har), pie-
dominately CO, at miosp here. This information has bee n ¢ orporated
into progressively more sophisticated and reliz ible numerical adiative
transfer models for studie s of t he thenmalbalinice. These models indi-
cate that the high sinface temperatues are maintained by an e flic ient,
sol ar-driven, at mospheric greenhouse mechanism [ Pollack, ef al 1080,
butther e are several details of t he deep- atinospshere thermal balance
that are still poorly understood. In pair ticular , obser vations and the-
orctical models available during t he late 1970°s and early 19s0°s indi-
cated that the thermal opacity provided by known infrared- active gases
(CO2, 1,0, SOz, HE, HCI) and HaSO4 aciosols might not be adequate
to maintain temperat ures as high as those obser ved at the suiface andin
the lower at inosphere of Venus. To produce the required thernmal opac-
ity, large numbers of tiny, invisible Mode (I pai ticles were added to the
clouds, almost doubling theirtotalmass. The relatively stable temper-
ature lapse rates observed throughout the deep at mosphe re (Figure 2)
are also poorly understood within the contoxt of these greenhouse inod-
els, which require near-11cutral stability (2.¢. adiabatic lapse rates ) at
t hese levels. More recent observation is, laboratory investigat ons, and
modeling studies have provided improved constraints o11 the thermal
opacity of the deep atmosphere, ana contiibuted additional support for
t he greenhouse hypothesis. Howeve r, o complete, self-conisistentimo del
of t he Venus deep at mosphere ther mal structure has not yetbeende-
veloped. The thertnal balance of the deep at mosphere 1S 1eviewed in
greater (ICtal inSection] V.

Ioven though spacecr aft and ground- based observations have pro
vided new insig ht into the thermalbalance of the deep atmosphere. they
havealsorevealeda few additional surprises. 'ethaps the most striking,
e xample is the discovery of the e vars ed. cquator to-pole temperature
pradients and the warr nopolar dipole structure at mesospheric le vels
[ Taylor et al 1979; 1980] (Figure 3) At altinades betwee n 70 90 kin.
the equator to pole temperature pradients rever se. such that polar e
grons are up to 20 K warmerthanthe cquivtor Taylor ef al 1979 1980;



Iy = dur¥eol’] (2)

Te: [0 el /(Ao liT )} (3)

where o = 566910 F W m 2K 4is the Stelan Boltzmanu constant.
At a distance of 0.7233 AU {rom the sunn Venus receives alimost
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twice as much solar radiation as the Fareh 26271 poo 1373 W 7).
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In general, the thermal balance of planetary atmosphere is deter-
mined by solving the thenmodynamic energy equation {c.f. Andrews,
Holton and Leovy, 1987):
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where the globally-averaged net heating, tate at cach level. Q. has
been expressed in tevms of the vertical diversence of the horizontally-
averaged net fluxes, I, and the horizontally-averaged atinospheric den-
sity, p. EFven though the verrical heat advection term (w1 /2 + 1]
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m g 9) must v wr ashito satistyelobaluos connmunny the olobalty
averaged net convective he arfluxes avewg: zer b the verteal veloeities
andtemperature vaniationsare Concb [CQ T/, nor an e cold an
stnks). P CS” fluxeshavertheretore heen e tude 0 on the tishit hand
side of g 10, such that the elobaliy averasedhoating rate at cach
1(, ((,1 dependsonthe verticaldiverpace ofthenetiadiative, con vee-
tive, chemical, and late utheatluxes

To solve for the globally-averaged equilibyinm temperature struc-
ture of a planetary atmosphere 1D RCE models express by 10 as an
initial value probleminfinitediflerencefam
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where the current time step is denoted with (he inde x. i, and the model
levels are indicated with the index , j. This equation requires both ini-
tial conditions and a boundary condition on the fluxes at the surface
or at the top of the atiosphere. *J heinitial temperature distribut ion
can be chosen at random o1 derivec | {rom available obse 1vations. The
boundary condition can take theform ofa time-dependentrelationship
describing the surface encrpy balance (i.e.  the time varying surface
heat flux), or be specificd as a constantatthe lowestor highest at-
mospheric level .. thesolar flux at the top of the atmmosphere, o a
constant upward heat flux at the top of the tropopause). The radiative-
convective equilibrium temperature strue ture can then be derived by
explicitly marching this cquation forward in time [e.f. Gicrasch and
Goody 1968 Crisp, 19849] or by cuuploying an implicit iteration scheme,
like Newton-Raphson [e.f. Pollack and Olying, 1973; Rawanathan,
197 G]. In cither case, the net fluxes must be evaluat ed throughout the
atmosphere at cach iteration. When the at mosphere reaches thermal
cquilibrium, the net flux divergence vanishes at i levels and this iter-
ative procedure converges.

The various components of the net flux behave diflerently asthe
ternperature distribution evolves to radiative equilibiium. For Venus,
neither latent or chemical heaat fluxes are thought to be important to
the thermal balance at altitudes below the micsopause (~ 100 km).
These quantities will therefore not be discussed further. Convective
heat fluxes are assumed to be significant only atle vels were the temper-
aturelapse rat es e xe eed thelocaladiabatic lapserate. These fluxes ¢iom
thorefore vary substantially as the temper ature struct ure ¢ volves and
radiative forcing produces convee tivelv-uinstable regions. The globally-
averag ed solar fluxes and hicating yatos re man alr nost constant as the
temperature structure evolves, hecanse the totil solar insolation changes
very 11111(, 011 Venus, andthe atinosphetiopucalproper iesareweak
fiunctions of temperature “1'11C thermakluxesand o 1 ateschange
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bhecause the Theninal

muach wene rapidly as the teimperature evolve
soutce function depends stronshv on temperature. These conte Duations

to thertnad balance are sununanzed below.

Convee ive Heat Transport

Convective proces
out much of the lower atinosphere of Venus, which is relatively opaque
to thernnal radiation [Pollack, 1969L] They are also important within

ses dominate the vertical heat transport through

the middle cloud layer, which is hexted strongly fiom below by up-
ding, therinal radiation. and cools eflectively 1o space from its up-
er regions [Pollack et al. 1980; Ingersoll ¢t ol 1987; Crisp el al.
990]. Convection is usnally sinndated in 1-D RCE models by a sini-

le “convective adjustment”™ process. In this approach, each time the
ertical temperature gradient exceeds the local adiabatic lapse rate in
ny model layer, enough hcat 1s instantaneously transported from the
ottom to the top of the layer 1o stabilize the lapse rate [Manabe and

etherald. 1967). Prandls mixing length theory has also been used to
‘tive fluxe

in 1-D RCE models [Gierasch and Goody.
967]. This method is more realistic than convective adjustinent be-
lause it does not require instantancous heat transport, but it has not
et been widely used for studies of the Venus thermal balauce.

Limate conv

tadiative Heat Transport

(7, g g, 1)
1"

\\.\

”\\\t,\.::,}_tv‘.f_?,:..t,ftv, 2.;
where 7 is the colump-integrated optical depth. (ineasured from the top
of the atmosphere), g is the cosine of the local zenith angle, ¢ is the
azimuth angle 1 is the monochromatic wavenumber (em ') at which
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The total net radiative flux at each level is then determined by inte-
grating these quantities over wavenumber:
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this high abntnde conission should produce alinmb brig hte ned diske 11
constramt (11111 nothetested @i cewn fromthe PUIOUNN (1, however be
cause themncrowave mstramentsavailableartheg 11111 (222 notprovide
the spatiad resolution needed to vesolve the Venus disk - Lhe M arines
2yby arr Venus in December of 1962 provided the firstopportunity 1¢ 1
test this hypothesis. Jts high spatial resolution micr owave obson vations
showed that the Venu s disk was b darkened at wavelengths nean
1.0(7111. “PHCSC 2 sults largely pre cluded che ionosphericOrigimnfor the
= high brightness temper atun es.

Bothobservationsandtheoretical [[10( dels of the Venus atiosphere

cvolved subsl@yl)ajly by 196 7, when Venera 4 enite red the E—GucG_um_my
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water vapor below the clouds (100 10 1000 bpinc than that ae~ined

i carher greenbouse models (2> 3000 ppmvi. but the teduced water

opacity was largely compensared by COL pressure induced bands and
the strong, SOs vibration-rotation fundamentals at mid infiaed wave.
fengths, which were neglected in the carlier miodels. The 273 measi o-
ments also showed that the HaSO, clouds provided less thermal Opac-
ity than carlier greenhouse models had assumed. Pollack ot al 11980
found that the observed cloud particle populations did not provide
enough thermal opacity to maintain the observed thenmal structune,
and postulated the presence of large nunbers (> 107 particles e )
of tiny, (renp < 0.07pm) “Mode (07 particles in the upper cloud. With
this opacity, they were able to sitnulate the high suiface temperature
and many other features of the observed thermal structure including
the stable region near the base of the clouds, and the neutrally-stable

region within the middle cloud.

Shortcomings of Existing Greenhouse Models

Pollack et al. [1980] added significantly to om understanding, of
the deep atmosphere thermal balance, but limitations in the input data
and modeling methods precluded a definitive deseription of the Venus
preenhouse. One of the most often quoted concerns is that this model
required large numbers of “invisible” Mode 0 particles to reproduce
the observed thermal structure when the nominal (Venera 11/12) H,0
abundances were used [Tomasko 1983). Iven though the presence of
these particles could not be precluded by the PV Large Probe Cloud
Particle Spectrometer (LCPS) observations, the apparent need for any
undetected opacity source compromises our understanding, of the ther-
mal balance, however.

Uncertainties in the Ho O mixing ratios below the clouds have also
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Recandh ot then onvene che mendional o oragein mnetther gl
e, iferredfvom the SNEagoud LIR observations have ditect iimplh
cations forthe thermal balance and denaniies of the deep atmosp here
[/.’('m*rmm/; .7 al TOR Becanse the net solar fluxes aie (x\) cct (@
to decrease with latitnde, the observod net thermal flu x increase wirh
latitude supeests that the deep atmosphere is not i local 1adiative:
Coil V'C(IN\rL, 11111111111 anpe scaledynamical processes must therefore
transport asignificant amount of hoat between low and high latitudes
these fevels A conventional, ecpator -to pole Hadley cell might provide
the meridional heat transpor tneeded 1o balance the observed vanations
in the netradiative cooling |[Grerasel. 1975; Schubert, 1 983 Hou and
Goody. 1985] This cell would produce rising motion at low latitudes,
poleward flow near the top of 1+ he dornain {cloud tops?) descending,
motion athigh latitudes, and cquiatorward flow at depth. Because the
tempera ture lepse rates are moderately stable throughou t much of the
loweratmosplicre, the 1ising, motion atlow latitudes will be associated
with adiabatic expansional cooling  Similarly, adiabatic comnpressional
heating will occur in the descending, high-latitude branch o this cell.
The netdynanical heating produced hy this cell could theicfore cor n-
pensate for the horizontal variations in net radiative heating,.

VEGA Balloc
On June lan<|l11}z\l.‘)85, li!ﬁ‘ovint VEGA mission deployed sur -

face landers gndmetedrovgical balloons in the Venus atmosphere. The
two VEGA 13alloons entered e atinosphere near local midnight and
collee teddata Yqrabout 48 Yours cach es they were transpor ted boyond
the morning termitiator by the provailing east-west winds. Even though
they weremserted at similarlatitudes (7° 117 N and 6 28 respectively),
the two balloons sampled ait masses separated by about 135 of longi-
tude. Bach balloon acqu ired o sitv measurements of pressure, ter npet
atur e, ver tical wind velocity, clond derssity, ambient llumination, and

ancl Landey Measurements

the frequency of lig ht ning for about 48 hours as it floated at altit udes
between about 50 and 54 ki, wit hin 1 he middle cloud {Sagdee v ¢t al.
1 080)

The VEG A Balloon measur ements revealed several sun prising, fea -
tures of the | hermal st ructure and dynamics of the middle cloud layer
First. even though the observed temper @ ure lapse rates were near adi -
abatic (stabilitvrang ing from () to 2K /kin), as was expected from ean
lier PV oand Venera obscrvations, the ait nasses sampled by the two
balloons had te mperature profiles the ¢ e ¢ offset by 6.5 K [Seiff (/
al. 1987) The amplitude of this 1on npera ture difference was supris
g because 1t s comparab le to the pole to-equator gradient at these
altitudes Inaddition. 1y1)111 balloons e ncountered vertical winds with
amplitudes~sorne tnes exceeding 3 m /< Comparisons of obser vedtem

perat wes and winds revearea upwa rd convective heat fluxes between
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Fash Fhie se feamres might bhe asso dated warlprbe b o o b
of o doudtevet o e v chrenlation [Chasp e ol 19910
Fiti b NTR observations at wavelengths betw cenddb 0 aned 1 1%

have heen used to constrain the tenaperature Lapsc rates neanthe Venns
s face. Conmpi v isons between synthetic vad voaee mwaps and spectral
nnage cubes acquired during 1997 indicate night-side aceraeodicmper
ature lapse rate s of 7 to 7.5 K/km o the lowest 6 kan M eadoas and
Crosp 1996]. These  lapse  rates indicate much greaterstatiestability
than those infer ed from eatlier ncasurements and greenhouse mo dels
(s to ®5K/km) [ef Seiff 1983; Seiff cf ol 198 7 ltconfinmed by
subseque ntobservations, thiese results mightindicate the prosence of
significantradiative 100sseS from the su rface during the Venns e hi

Recent Advances in Radiative ‘Tvansfer Modeling Met hods
Additional insight into the thermal bal ance of the deep atmosphere
has boen provided through the development of progressivelv more s o
phist icated and reliable numerical  radiative transfer models In the
late 1970’s. when t he last compiehensive investigations of the deep at-
mosphere were co nducted, the approximations and simplific ations re-
quired for computational eflic iency (ennpirical band models. two stream
solutions to the equation of transfer, neglect of scat tering proccesses at
thermal wavelengths) substantially limited the reliability andrange of
validity of even t he most sophisticated models. Theiraceuracy was fur -
t her limited by uncertainties in the optical proper vies of gases at high
t cmperatur es and pressures. l'{(;(;(}pt advances iy ml/u derstauding
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trafuts An the opac-
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diz ive for :ing were not ye t ident ificd in the carly 1980°s wi o€ Taylor
g ) \ 1

el al EQ 8] reviewed this topic in Venus. i their review, the y pro-
pored th t the high polar mesospheric temperatures might be produced
by 1 compressional heating, in the descending branc b o f an axially-
symiet rie, equator-to pole Hadley ccll. (11) enhanced highlatitude so-
lar hoating associated with increases in the atmospheric pavthileng, ths
andabundances of (optically-thin)polaime sosphericaerosols, (i) the
abs orption of the intense upwelling thermnaladiation emitted by 1 he
polar hot spots by CO» and acrosols armesosphericleve 1s, orsome cor -
bhinationol these DIOC©@s(%.  Subscque nt modeling studies bive show
that none of these mechanisiis can acconnt for the observed thenm al
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TOICUCT DCLWCCT 12 GCLODCT anlt T 1IeCCHneT TU0s Proviae the tiost,
comprehensive, simultaneous, global description of the thermal struc-
ture and optical propertics of the mesospher. This institament col-
lected more than 1500 moderate-1esolation (H to 7em ') thermal in-
frared (270 to 1650 ¢~ 1) spectra at latitudes between 60°S and 879N,
These spectra were analyzed Lo 1etrieve a sclf-consistent deseription of
the thermal structure, aerosol distribution. and SO, mixiug ratios at
altitudes between 60 and 90k [Zasora and Moroz, 1992).

The Venera 15 temperatures and acrosol distributions were also
used to derive solar heating, rates and thenmal cooling, rates at meso-
spheric levels [Schafer et al. 1990: Haus and Gocering, 1990: Titow,
1995]. Their solar radiative transfer model incorporated the Modified
sddington approxitmation [Meador and Weaver 1980]) and the 2-stream
Adding wethod {Lacis and Hansen, 1974 Criosp. 19830 1986] 10 find
sotar fluxes and heating, rates in the presence of gas and acrosols ab
sorption and scattering. A line-byv-hne model was used to derive the
monochromatic optical properties of vases  Unlike in ecarlicr thermal
balance models, these investigators denved thermal fluxes from o maodel
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